Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
22nd ACM Internet Measurement Conference, IMC 2022 ; : 1-13, 2022.
Article in English | Scopus | ID: covidwho-2138165

ABSTRACT

Given the importance of privacy, many Internet protocols are nowadays designed with privacy in mind (e.g., using TLS for confidentiality). Foreseeing all privacy issues at the time of protocol design is, however, challenging and may become near impossible when interaction out of protocol bounds occurs. One demonstrably not well understood interaction occurs when DHCP exchanges are accompanied by automated changes to the global DNS (e.g., to dynamically add hostnames for allocated IP addresses). As we will substantiate, this is a privacy risk: one may be able to infer device presence and network dynamics from virtually anywhere on the Internet — and even identify and track individuals — even if other mechanisms to limit tracking by outsiders (e.g., blocking pings) are in place. We present a first of its kind study into this risk. We identify networks that expose client identifiers in reverse DNS records and study the relation between the presence of clients and said records. Our results show a strong link: in 9 out of 10 cases, records linger for at most an hour, for a selection of academic, enterprise and ISP networks alike. We also demonstrate how client patterns and network dynamics can be learned, by tracking devices owned by persons named Brian over time, revealing shifts in work patterns caused by COVID-19 related work-from-home measures, and by determining a good time to stage a heist. © 2022 Copyright held by the owner/author(s).

2.
Proceedings of the 2022 47th Ieee Conference on Local Computer Networks (Lcn 2022) ; : 64-72, 2022.
Article in English | Web of Science | ID: covidwho-2136435

ABSTRACT

Due to the COVID-19 pandemic, smartphone-based proximity tracing systems became of utmost interest. Many of these systems use Bluetooth Low Energy (BLE) signal strength data to estimate the distance between two persons. The quality of this method depends on many factors and, therefore, does hardly deliver accurate results. We present a multi-channel approach to improve proximity classification, and a novel, publicly available data set that contains matched IEEE 802.11 (2.4 & 5 GHz) and BLE signal strength data, measured in four different environments. We utilize these data to train machine learning models. The evaluation showed significant improvements in the distance classification and consequently also the contact tracing accuracy. However, we also encountered privacy problems and limitations due to the consistency and interval at which such probes are sent. We discuss these limitations and sketch how our approach could be improved to make it suitable for real-world deployment.

SELECTION OF CITATIONS
SEARCH DETAIL